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Abstract 

Our previous work has shown that images appearing 

in bioscience articles can be classified into five types: 

Gel-Image, Image-of-Thing, Graph, Model, and Mix. 

For this paper, we explored and analyzed features 

strongly associated with each image type and 

developed a hierarchical image classification 

approach for classifying an image into one of the five 

types. First, we applied texture features to separate 

images into two groups: 1) a texture group 

comprising Gel Image, Image-of-Thing, and Mix, and 

2) a non-texture group comprising Graph and Model. 

We then applied entropy, skewness, and uniformity 

for the first group, and edge difference, uniformity, 

and smoothness for the second group to classify 

images into specific types. Our results show that 

hierarchical image classification accurately divided 

images into the two groups during the initial 

classification and that the overall accuracy of the 

image classification was higher than that of our 

previous approach. In particular, the recall of 

hierarchical image classification was greatly 

improved due to the high accuracy of the initial 

classification. 

Introduction 

Images are abundant in bioscience articles and they 

generally provide important information to physicians 

and biologists. For example, Rafkind et al.
1
 found an 

average of 5.2 images per biological article in the 

Proceedings of National Academy of Science (PNAS) 

and also found that 43% of the articles in the medical 

journal The Lancet contained biomedical images. 

Findings such as these suggest the need for a good 

image classification system for efficiently managing 

the variety of images used in the biomedical 

literature. 
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Previous work has relied on text associated with 

images for retrieval. For example, Yu and Lee 

developed natural language processing approaches to 

make a connection between abstract sentences and 

biological images in the same article
2
. Hearst et al. 

developed the BioText search engine, which enables 

biologists to browse article images by searching 

figure captions as well as titles and abstracts
3
. 

Similarly, GoldMiner
4
, BioMed Search

6
, and Yale 

Image Finder (YIF)
7
 used image captions or text 

appearing in an image as part of their image search. 

However, the significant limitation of text-based 

image search engines is that they ignore image 

content. For instance, when a physician searches for 

“lung cancer” images, he/she might prefer to find  

microscopic “lung cancer” images that can be used as 

an aid in diagnosis rather than graphs or charts 

showing “lung cancer statistics.” This suggests the 

usefulness of image information for an image search 

engine.  

Supporting this hypothesis, studies have found that 

image classification and retrieval systems benefit 

from combining image features with text features. For 

example, Shatkay et al. used image features derived 

directly from the image data for biomedical document 

categorization
8
. The SLIF (Subcellular Location 

Image Finder) system detects fluorescence 

microscopy images to be incorporated into text 

information retrieval
9-11

. Furthermore, we have 

devised a biomedical image classification system 

implementing both image and text features that has 

obtained better performance than when relying on 

text features alone
1.
 

For this paper, we hypothesized that each image type 

has specific attributes that can be hierarchically 

organized for the image classification task and that 

we could improve the image classification system if 
             

    (a) Gel-Image         (b) Image-of-Thing               (c) Graph                     (d) Model                     (e) Mix 

Figure 1. Five image types 
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we could find “signature” features for each image 

type. In order to find signature image features, we 

explored a variety of image features and manually 

evaluated them. We then selected the top-ranked 

image features and used them for hierarchical image 

classification. 

In the following, we first provide the definitions of 

the five image types we apply in this study before 

describing our methods, results, and conclusions. 

Image taxonomy 

We followed the previous image taxonomy
1
 to 

classify images as one of five types: Gel-Image, 

Image-of-Thing, Graph, Model, and Mix. Gel-Image 

presents images such as Northern (for DNA), 

Southern (for RNA), and Western (for protein). 

Image-of-Thing includes images of cell, cell 

components, tissues, organs, or species. Graph 

includes charts, plots and other graphs drawn either 

by authors or a computer. Model depicts biological 

processes, experimental models, protein sequences, or 

higher protein structures. Mix refers to an image that 

incorporates two or more of the preceding types of 

images. Figure 1 shows examples of the five image 

types. 

Image features 

We examined five image features – skewnesss, 

entropy, uniformity, smoothness, and edge difference 

– and applied them as part of our image classification. 

The first four image features were extracted from an 

intensity histogram that was created by quantizing the 

gray-scale intensity values into a range from 0 to 255 

and normalized by the total sum of the histogram 

before feature extraction to remove the dimension of 

input image12. Skewness is the third moment of the 

histogram, and it represents the histogram 

distribution. A histogram in which the tail is heavier 

on the right has a negative skewness; a histogram in 

which the tail is heavier on the left has a positive 

skewness. Entropy is a measure of the variability of 

the input image, and it is zero for a constant image. 

Uniformity is a measure of the consistency of the gray 

level, so it presents a maximum value for an image in 

which all gray levels are equal.  Conversely, 

smoothness is a measure of gray-level contrast, so it 

presents a minimum value for an image in which all 

gray levels are equal. 

The only feature we looked at in this paper that was 

not a histogram feature was edge difference, which is 

a measure of the resemblance between the input 

image and its edge image. Generally, since images in 

the non-texture group are presented by lines, curves, 
 AMIA 2009 Symposium Pr
surfaces, etc., their edge images are very similar to 

original images. On the other hand, images in the 

texture group are completely different from their edge 

images. Thus, edge difference actually plays an 

important role for classifying images into texture and 

non-texture groups. 

Image classification 

As shown in Figure 1, Gel-Image and Image-of-Thing 

are presented using a variety of gray-level textures. In 

contrast, Graph and Model are presented as simple 

diagrams consisting of lines, curves, surfaces, etc., 

but their color remains constant. That is, Graph and 

Model are recognized as having several homogeneous 

regions, while Gel-Image and Image-of-Thing are 

noted for their texture. Therefore, we can group Gel-

Image and Image-of-Thing as a texture group, and 

Graph and Model as a non-texture group. Since Mix 

comprises images belonging to two or more image 

types, we classify Mix as part of the texture group. 

We can hierarchically subclassify images within their 

respective general classifications based on their 

image features as shown in Figure 2. In the texture 

group, the histogram of Image-of-Thing presents a 

very different distribution than that of Gel-Image and 

Mix, and Mix has more homogeneous regions than 

Gel-Image does. In the non-texture group, Graph 

usually uses a greater variety of diagrams, so image 

features of Graph have a larger variance than those of 

Model. If we can accurately divide images into two 

groups during the first image classification, images in 

each group will be classified accurately as well. 

In the following subsections, we describe how to use 

image features to divide images into the two groups 

and to classify an image into one of the five image 

types. 

1) 1
st
 image classification 

The first step of image classification is to accurately 

separate texture images from non-texture images. For 

this, we used three image features: skewness, entropy, 

and edge difference. 

 

Figure 2. Hierarchical image organization 
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Skewness and entropy were used for extracting 

texture information. Figure 3 shows average skewness 

and entropy for the image types, respectively. As the 

figure shows, the skewness of Image-of-Thing is 

positive, and the skewness of other image types is 

negative, while the entropy of the texture group is 

much higher than that of the non-texture group. 

Edge difference is used for extracting non-texture 

information. Since images in the non-texture group 

look like their edge images, edge differences for that 

group are far lower than those of the texture group. 

Figure 4 shows the pseudo-code for the first image 

classification. Since skewness is a unique feature of 

Image-of-Thing, it has the highest priority. Edge 

difference is also a unique feature for the non-texture 

group, so that it is used as a secondary condition. In 

the last step, images in which entropies are higher 

than the threshold are classified into the texture 

group. 

2) 2
nd

 image classification in the texture group 

Once the texture group is separated from the non-

 

(a) Skewness 

 

(b) Entropy 

Figure 3. Skewness and entropy 

 

Figure 4. Pseudo-code for first image classification 
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texture group, Gel-Image, Image-of-Thing, and Mix 

must be distinguished from each other. 

First, the skewness of Image-of-Thing is usually 

positive and higher than of the skewness of other 

images. Next, Gel-Image has a higher edge difference 

and lower uniformity than Mix. 

Figure 5 shows the pseudo-code for the second image 

classification in the texture group. In this step, 

skewness also has the highest priority due to its 

uniqueness. Then, Gel-Image is classified using 

uniformity and edge difference. 

3) 2
nd

 image classification in the non-texture group 

Mix images are often misclassified into the non-

texture group due to ambiguity in the image features 

they contain, which means that these misclassified 

images must be separated from the non-texture group 

before image classification. The edge difference of 

Mix is generally higher than that of Graph and 

Model, which enables misclassified Mix images to be 

distinguished from other images in the non-texture 

group. 

On the other hand, there are an insufficient number of 

 

Figure 5. Pseudo-code for 2
nd

 image classification 

in the texture group 

 

Figure 6. Smoothness of Graph and Model 

 

Figure 7. Pseudo-code for second image 

classification in the non-texture group 
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features to discriminate between Graph and Model. 

Figure 3(a) and Figure 6 show, however, that the 

skewness is bigger and the smoothness less variable 

for Model than they are for Graph, so the use of these 

two characteristics can be used to limit the range of 

Model.  By limiting the range of Model, more 

instances of Graph can be accurately classified and 

although less instances of Model can be accurately 

classified. 

Figure 7 shows the pseudo-code for the second 

classification of the non-texture group. In this step, 

edge difference has the highest priority for 

distinguishing Mix from the others. Then, Model is 

classified using smoothness and skewness. 

Experimental results 

We randomly selected a subset of 450 images from 

the image poo l1: Gel-Image (64), Image-of-Thing 

(68), Graph (196), Model (24), and Mix (98). These 

images were split up such that half could be used for 

training and the other half for testing. The training set 

was then used to determine the reference and 

threshold values, and the testing set was used to 

evaluate the classification system. 

We used recall, precision, and F-score as the 

evaluation metrics for image classification. Recall is 

the number of true positives divided by the total 

number of elements that actually belong to the type. 

Precision is the number of true positives divided by 

the total number of elements labeled as belonging to 

the type. F-score is the harmonic mean of recall and 

precision, and it represents the accuracy of the 

classification. 

In addition, we tried to change the gray level of 

images. Although 256 gray levels often provide 

greater information,  they also create ambiguity by 

implying that Graph and Model have texture 

information. Thus, we adjusted the gray level of 

image to remove the ambiguity between Graph and 

Model. 

Table 1 shows the number of correctly classified 

images in the first image classification according to 

gray levels, and as it shows, the accuracy is changed 

according to the gray level. Eventually, we obtained 

the best accuracy at the gray levels of 128, 64, and 32 

gray levels rather than at 256 gray levels. 

Table 2 shows the number of correctly classified 

images in the second image classification according 

to gray level. The image classification presents the 

highest accuracy (57.3%) at the 32 gray levels, and 

this value is about 3.8% higher than the accuracy  of 

53.5% obtained by Rafkind et al1. 
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Table 3 shows the confusion matrix for the image 

classification at the 32 gray levels, and Table 4 shows 

recall, precision, and F-score based on Table 3 for 

evaluating its performance. The number in the round 

bracket shows the performance of Rafkind et al
1
. 

The results show that the precision of Gel-Image 

decreased, while its recall increased. Conversely, the 

precision of Mix increased, but its recall decreased. 

Table 3 shows that 20 Mix images were misclassified 

as Gel-Image. These misclassifications lowered the 

performance of Gel-Image in terms of precision and 

Texture Group 
Non-texture 

Group 
gray 

level 
Gel Thing Mix Graph Model 

Prec. 

256 31 32 33 82 7 82.2% 

128 30 32 36 84 8 84.4% 

64 30 32 36 83 9 84.4% 

32 29 32 37 83 9 84.4% 

16 31 32 40 69 7 79.6% 

Table 1. Number of correctly classified images for 

1
st
 image classification 

Texture Group 
Non-texture 

Group 
gray 

level 
Gel Thing Mix Graph Model 

Prec. 

256 23 30 12 52 2 52. 9% 

128 26 30 15 53 3 56.4% 

64 26 30 14 53 4 56.4% 

32 25 30 17 54 3 57.3% 

16 21 31 18 49 3 54.2% 

Table 2. Number of correctly classified images for 

2
nd

 image classification 

Predicted Types Actual 

Types Gel Thing Mix Graph Model 

Gel 25 2 3 1 1 

Thing 3 30 0 0 1 

Mix 20 1 17 9 2 

Diagram 2 2 17 54 23 

Model 2 0 1 6 3 

Table 3. Confusion matrix for 2
nd

 image 

classification at 32 gray levels 

 TP FP FN Precision Recall F-score 

Gel 25 27 7 
48.1% 

(52.9%) 

78.1% 

(69.2%) 

0.595 

(0.600) 

Thing 30 5 4 
85.7% 

(85.7%) 

88.2% 

(88.6%) 

0.870 

(0.800) 

Mix 17 21 32 
44.74% 

(42.9%) 

34.7% 

(75.0%) 

0.391 

(0.300) 

Graph 54 16 44 
77.1% 

(52.7) 

55.1% 

(23.1%) 

0.643 

(0.661) 

Model 3 27 9 
10.0% 

(33.3%) 

25.0% 

(12.0%) 

0.143 

(0.176) 

Table 4. Performances of image classification 
 oceedings Page - 330



Mix in terms of recall. In other words, Gel-Image and 

Mix are inversely correlated with each other, and 

system performance is too weak to accurately classify 

Gel-Image and Mix. 

On the other hand, the precision and recall of Graph 

greatly increased. This is due to 92 of 110 images in 

the non-texture group being correctly classified 

during the first image classification and 54 Graph 

images being stably classified during the second 

image classification, which also accounts for the 

better recall of Model.  However, as mentioned in the 

previous section, there is no way to avoid the loss of 

precision in distinguishing Model since the accuracy 

of the non-texture group depends on the results of the 

first image classification. 

Conclusion 

In this paper, we reported on the use of hierarchical 

image classification for bioscience literature. We 

manually evaluated image features and explored the 

features for hierarchical image classification. Our 

results show that our methods outperform our 

previous system, although in future work we will need 

to integrate text features into our model to optimize 

system performance. 

Future Work 

In future work we will continue to identify and 

explore the use of features that could benefit image 

classification. The image types Graph and Model, for 

instance, share many similar components (e.g., points, 

lines, and surfaces) that make it difficult to 

discriminate them from one another; the use of 

additional features might aid in distinguishing these 

types. Mix incorporates multiple image types, which 

creates problems for classification that might require 

segmentation and the extraction of additional features 

to solve. In addition, we will integrate image features 

with text features to explore how this might improve 

image classification. 
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